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Słowińska-Lisowska, M. Relationships

between Vitamin D and Selected

Cytokines and Hemogram Parameters

in Professional Football Players—Pilot

Study. Int. J. Environ. Res. Public

Health 2021, 18, 7124. https://

doi.org/10.3390/ijerph18137124

Academic Editor: Paul B. Tchounwou

Received: 8 June 2021

Accepted: 1 July 2021

Published: 2 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of the Biological and Medical Basis of Sport, University School of Physical Education in Wrocław,
Al. Paderewskiego 35, 51-617 Wrocław, Poland; aleksandra.zagrodna@awf.wroc.pl (A.Z.);
malgorzata.slowinska-lisowska@awf.wroc.pl (M.S.-L.)

2 Department of Endocrinology, Diabetology and Isotope Therapy, Wrocław Medical University, ul. Pasteur 4,
50-367 Wrocław, Poland; anna.bohdanowicz-pawlak@umed.wroc.pl

3 Faculty of Physiotherapy, University School of Physical Education in Wrocław, Al. Paderewskiego 35,
51-617 Wrocław, Poland; felicitas1@wp.pl

* Correspondence: anna.ksiazek@awf.wroc.pl; Tel.: +48-71-347-35-63

Abstract: Vitamin D affects both innate and adaptive immunity. Most of the effects of vitamin
D on innate immunity are anti-inflammatory. In monocytes/macrophages, vitamin D suppresses
the production of the inflammatory cytokines TNF-alpha, IL-1beta, IL-6, and IL-8. Therefore, the
aim of our study was to investigate the relationship between 25(OH)D concentration and selected
cytokines—IL-6, TNF-α, and IL-1β, which are hemogram parameters for professional football players.
We enrolled 41 Polish premier league soccer players. The mean age, career duration, and VO2max were,
respectively: 22.7 ± 5.3 years, 14.7 ± 4.5 years, and 55.8 ± 4.0 mL/kg/min. Serum levels of 25(OH)D
were measured by electrochemiluminescence (ECLIA) using the Elecsys system (Roche, Switzerland).
Serum levels of IL-6, IL-1β, and TNF-α were measured by ELISA (R&D Systems, Minneapolis).
Blood count with smear was measured on a Sysmex XT-4000i analyzer (Sysmex Corporation, Japan).
Our study showed decreased serum 25(OH)D levels in 78% of the professional players. We found a
significant negative correlation between 25(OH)D levels and TNF-α and LYMPH (%). The results also
demonstrated a statistically significant positive correlation between vitamin D levels and NEUTH
(%), NEUTH (tys/µL), and EOS (tys/µL). Based on the results of our study, we concluded that
football players from Poland are not protected against vitamin D insufficiency in winter months.
Moreover, vitamin D deficiency may be associated with an increased pro-inflammatory risk in
well-trained athletes.

Keywords: 25(OH)D; pro-inflammatory cytokines; athletes; competitive period

1. Introduction

The effect of vitamin D on calcium-phosphate balance is well established, whereas
its effects on the immune system and immune processes are still being researched [1,2],
as are the associations with the incidence of chronic diseases, including metabolic or
neoplastic diseases. Population-based studies have revealed serum vitamin D deficiency
even among young and healthy individuals, thus highlighting an important global public
health problem [3]. Recent scientific reports also refer to increased immunity and decreased
susceptibility to COVID-19 through vitamin D supplementation [4].

Vitamin D has been shown to stimulate the synthesis of the antimicrobial proteins
cathelicidin and β-defensin by macrophages in natural killer (NK) cells [5–7]. Cathe-
licidin, along with vitamin D, increases the phagocytic properties of monocytes and
macrophages [8–10]. In addition to its antimicrobial effects, vitamin D exhibits multi-
directional anti-inflammatory properties by modulating T cell function, stimulating the
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differentiation of regulatory T cells, and possibly inhibiting the proliferation of particular
types of T cells [11].

Many studies have shown that under the influence of vitamin D, there is a reduction
in Th cell population, a decrease in the density of the cytokines IL-2, IL-9, TNF-α, IFN-γ,
and IL-22, and an increase in the density of Th2 cells and the anti-inflammatory cytokines
IL-3, IL-4, IL-5, and IL-10 [2,12–14]. It is also suggested that vitamin D has an inhibitory
effect on the production of proinflammatory interleukins, including IL-1 and IL-6 [15–19].
Vitamin D has an inhibitory effect on Th1 cells through the suppression of Il-12 secretion
by dendritic cells. This has the effect of enhancing the action of Il-10 and Treg cells, which
in turn contributes to the conversion of Th1 cells into Th2 cells. This effect of vitamin D
causes an increase in the number of Th2 cells that produce anti-inflammatory cytokines
and a decrease in the number of Th1 cells responsible for secreting pro-inflammatory
cytokines [20].

Furthermore, hemogram-derived inflammatory markers such as mean platelet volume
(MPV), range of red blood cell distribution (RDW), neutrophil to lymphocyte ratio (NLR),
and platelet to lymphocyte ratio (PLR) have attracted much attention in recent times. It has
been shown that vitamin D deficiency can cause an increase in the mean platelet count and
platelet volume, even in healthy subjects, hence, leading to the hypothesis that vitamin D
deficiency may affect the parameters of the hemogram [21]. The PLR and NLR have been
used to determine inflammation in different types of malignancies, infectious diseases,
metabolic syndrome, cardiovascular disease, and other inflammatory diseases [22–25].
In the case of cardiovascular disease, inflammation and vitamin D deficiency may be
associated with an increased risk of left ventricular concentric remodeling [26], arterial
stiffness [27], endothelial dysfunction [28] and have emerged as an independent risk factor
for all-cause and cardiovascular mortality [29]. The negative effects of vitamin D deficiency
on the cardiovascular system may also adversely affect athletic performance. It should be
noted that PLR and NLR are not widely used to determine the association of inflammation
and vitamin D deficiency.

Similarly, the correlation between serum 25(OH)D levels and circulating eosinophils
is not strongly established; however, a few studies have noted that lower levels of vitamin
D are associated with an increased blood eosinophil count [30,31].

Athletes seem to be prone to vitamin D deficiency [32–38]. Unfortunately, even out-
door training (such as by football players) is not fully protective against disturbances in this
regard [23–36]. On the other hand, inflammation induced by training and game play might
be related to low levels of vitamin D in athletes [39]. Therefore, the aim of our study was to
investigate whether there is a relationship between 25(OH)D concentration and selected
cytokines—IL-6, TNF-α, and IL-1β—in the hemogram parameters of football players.

2. Materials and Methods
2.1. Participants

A total of 41 Polish premier league football players were included in the study. Par-
ticipants’ characteristics are shown in Table 1. The study was conducted during a winter
season in Wroclaw, Poland, which is situated at the latitude of 51◦10′ N. The uniforms
covered 80% of the competitors’ bodies. All the players were in the competitive period and
had similar training loads. None of the subjects used any food supplements containing
vitamin D or calcium.

2.2. Measurements

Height was measured with an anthropometer and body mass was measured with an
electronic scale. Body composition (body fat, fat free body mass (FFM), total body water
(TBW), muscle mass) was determined using the single frequency bioelectric impedance
analyzer (BIA, 50-kHz) manufactured by Akern Bioresearch (Italy).

Aerobic performance (VO2max/VO2peak) was assessed using a 20 m multistage shuttle
running field test [40].



Int. J. Environ. Res. Public Health 2021, 18, 7124 3 of 10

This method most closely reflects the football effort due to the environment in which
physical effort is exerted [41].

Table 1. Participants’ characteristics.

Characteristics Mean ± SD (n = 41)

Age [years] 22.7 ± 5.3
Body weight [kg] 76.3 ± 7.4
Height [m] 1.82 ± 6.7
Body fat [%] 19.1 ± 3.2
VO2max [mL/kg/min] 55.8 ± 4.0
Career duration [years] 14.7 ± 4.5

VO2max: maximal oxygen uptake.

2.3. Blood Testing

Blood samples were collected during winter season (December-January). Blood sam-
pling was carried out at 8 am after a 12 h fast and a 24 h period without training. Serum
was separated and stored at −70 ◦C. Serum levels of 25-hydroxycholecalciferol were mea-
sured by electrochemiluminescence (ECLIA) using the Elecsys system (Roche, Switzerland).
Serum levels of IL-6, IL-1β, and TNF-α were measured by ELISA (R&D Systems, Min-
neapolis). For 25(OH)D, the intra- and interassay coefficients of variation (CVs) were 5.6%
and 8.0%, respectively, and the limit of detection was 10 nmol/l (4 ng/mL). The respective
values for IL-6 were 2.6%, 4.5%, and 0.70 pg/mL, those for TNF-α were 4.7%, 5.8% and 1.6
pg/mL, and those for IL-1β were 4.8%, 5.6% and <1 pg/mL.

Blood counts with smear were measured on a Sysmex XT-4000i analyzer (Sysmex
Corporation, Japan) (Table 2).

Table 2. Hemogram parameters of the study group.

Mean ± SD (n = 41)

WBC (tys/µL) [4.0–10.0] 5.68 ± 1.62
% NEUTH (%) [40–74] 48.3 ± 9.78
% LYMPH (%) [19–48] 37.4 ± 8.44
% EOS (%) [0.5–6.0] 3.4 ± 2.49
# NEUTH (tys/µL) [1.9–8.0] 2.82 ± 1.39
# LYMPH (tys/µL) [0.9–4.5] 2.06 ± 0.58
# EOS (tys/µL) [0.05–0.5] 0.19 ± 0.14
PLT (tys/µL) [130–440] 219.49 ± 46.29
MPV (fL) [7.2–12] 8.03 ± 0.84
PLR 34.1 ± 5.2
NLR 1.53 ± 1.23

In addition, inflammatory markers derived from hemograms, i.e., platelet/lymphocyte
ratio (thousand/µL) (PLR) and neutrophil/lymphocyte ratio (thousand/µL) (NLR), were
also calculated [21].

The mean values of evaluated parameters—WBC, NEUTH (%), LYMPH (%), EOS
(%), NEUTH (thousand/µL), and EOS (thousand/µL)—in the study group were within
the normal ranges, and the instances of slightly higher results could be considered
clinically insignificant.

2.4. Statistical Analysis

Statistical analyses were performed using PQStat for Windows (version 1.4.4.126)
(PQStat Software, Poznań, Poland). Continuous variables were first analyzed for normal
distribution using the Kolmogorov–Smirnoff test with the Lilliefors correction. Differences
in cytokine and hemogram parameter values between the two serum 25(OH)D level ranges,
i.e., <20 ng/dL vs. ≥20 ng/dL were calculated by t-Student’s test or Mann–Whitney rank
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sum test. The relationship between 25(OH)D levels and cytokine levels was analyzed by
estimating the Spearman rank correlation coefficient. Data were presented as means ± SD,
with p < 0.05 being indicative of statistical significance.

3. Results

The results of our study are presented in Tables 3–5.

Table 3. Cytokine levels and hemogram parameters (mean ± SD) relative to 25(OH)D levels.

Serum 25(OH)D Concentration (ng/mL)

<20
n = 32

≥20
n = 9 p

IL-1β (pg/mL) 2.4 ± 2.2 1.7 ± 1.5 0.572
IL-6 (pg/mL) 0.86 ± 0.78 0.73 ± 0.37 0.613
TNF-α (pg/mL) 1.46 ± 0.26 1.46 ± 0.29 0.971
WBC (tys/µL) 5.64 ± 1.73 5.81 ± 1.29 0.601
% NEUTH (%) 47.5 ± 10.6 51.4 ± 6.2 0.124
% LYMPH (%) 38.4 ± 9.1 * 33.5 ± 4.4 * 0.02
% EOS (%) 3.02 ± 2.07 4.83 ± 3.55 0.060
# NEUTH (tys/µL) 2.77 ± 1.52 3.00 ± 0.83 0.215
# LYMPH (tys/µL) 2.09 ± 0.61 1.94 ± 0.50 0.516
# EOS (tys/µL) 0.168 ± 0.116 * 0.288 ± 0.184 * 0.028
PLT (tys/µL) 219 ± 47 221 ± 51 0.902
MPV (fL) 8.03 ± 0.83 8.00 ± 0.97 0.914
PLR 112.5 ± 35.4 118.2 ± 30.4 0.521
NLR 1.51 ± 0.37 * 1.59 ± 0.40 * 0.035

* p < 0.05.

Table 4. Correlation between 25(OH)D levels and IL-6, IL-1β, and TNF-α in athletes.

25(OH)D (ng/mL)
(n = 41)

Rho p

IL-1β (pg/mL) −0.16 0.34
IL-6 (pg/mL) −0.14 0.41
TNF0α (pg/mL) −0.47 * 0.004

* p < 0.01.

Table 5. Correlations between 25(OH)D concentration and hemogram parameters.

25(OH)D (ng/mL)

Rho p

WBC (tys/µL) 0.08 0.62
% NEUTH (%) 0.49 * 0.02
% LYMPH (%) −0.50 * 0.02
% EOS (%) 0.26 0.09
# NEUTH (tys/µL) 0.49 * 0.02
# LYMPH (tys/µL) −0.06 0.71
# EOS (tys/µL) 0.31 * 0.049
PLT (tys/µL) 0.14 0.37
MPV (fL) 0.08 0.63
PLR 0.079 0.612
NLR 0.197 0.204

* p < 0.01.

The mean serum levels of cytokines were as follows: IL-6—0.84 ± 0.7 pg/mL, IL-1β—
2.23 ± 2.04 pg/mL, and TNF-α—1.46 ± 0.26 pg/mL. The mean serum 25(OH)D level was
16.78± 8.21 ng/mL. In line with the latest guidelines, the normal ranges for serum 25(OH)D
levels are defined as 30–50 ng/mL (75–125 nmol/L) or 40–60 ng/mL (100–150 nmol/L).
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Vitamin D insufficiency is defined as a serum level of 20–30 ng/mL (50–75 nmol/L) and
vitamin D deficiency as a serum level below 20 ng/mL (<50 nmol/L) [39]. We found that
12.2% (n = 5) of the players had normal levels of 25(OH)D, 9.8% (n = 4) had 25(OH)D
insufficiency, and 78% (n = 32) had 25(OH)D deficiency. In our paper, we divided football
players into two ranges, i.e., 25(OH)D <20 ng/mL vs. 25(OH)D ≥20 ng/mL [42,43].

Table 3 show differences between the study groups (differing in 25(OH)D levels) in
terms of cytokine levels and hemogram parameters. The football players with 25(OH)D
levels of <20 ng/mL had statistically higher LYMPH (%) (p = 0.0245) and lower EOS
(tys/µL) (p = 0.028) and NLR (p = 0.035) compared to athletes with higher 25(OH)D
levels. The remaining results for cytokines and hemogram parameters were not statistically
different between the study groups.

Table 4 provides the Spearman correlation coefficient values for the relationship
between 25(OH)D levels and the study variables. A statistically negative correlation was
found between 25(OH)D concentration and TNF-α in the study group (p = 0.004). No
correlations were revealed between 25(OH)D levels and IL-6 and IL-1β.

The values of the Spearman coefficient of correlation between 25(OH)D levels and
hemogram parameters in studied subjects are given in Table 5. According to our results,
there were statistically significant positive correlations between 25(OH)D and NEUTH
(%) (p = 0.02), NEUTH (tys/µL) (p = 0.02), and EOS (tys/µL) (p = 0.049). There were also
statistically significant negative associations between 25(OH)D levels and LYMPH (%)
(p = 0.02). In the case of the remaining parameters, no statistically significant correlation
was shown.

4. Discussion

Our data confirmed a relatively high prevalence of low serum concentrations of
vitamin D in professional male athletes [32–38]. According to various observations, vitamin
D deficiency can occur in up to 50–80% of the population [42].

The footballers in our study were evaluated during winter season. They all trained
outdoors 2 h a day (exposing only faces and hands). In our location, sunlight exposure
does not provide adequate vitamin D synthesis in autumn and winter [44]. Contrary to
expectations, the mean concentration of 25(OH)D in athletes was lower than that found in
non-athletes [45]. However, some findings did not support such a relationship, pointing to
the balanced diet of athletes as a protective factor against vitamin D deficiency [46]. Un-
dertaking outdoor training seems to be associated with higher concentrations of 25(OH)D
as compared with exercising indoors [38]. Lower vitamin D levels are more commonly
observed in athletes who train indoors [34,38,47]. Many studies performed in European
football players, particularly during the winter season, showed serum 25(OH)D levels
below the recommended range [48,49].

Recent publications indicate a significant relationship between physical exercise,
immune system function (concentrations of pro-inflammatory and anti-inflammatory cy-
tokines), and the status of vitamin D supply. These findings may be particularly important
for professional athletes, in whom vitamin D deficiency may additionally increase the risk
of inflammatory processes resulting from intense physical training and competition [50,51].
Athletes practicing high-performance sports are therefore a special group of individu-
als exposed to factors that result in high concentrations of pro-inflammatory cytokines.
Main et al. [52] showed an increase in TNF-α and Il-6 as exercise continued, which was
associated with muscle damage and the appearance of an inflammatory reaction.

Increases in CRP, Il-6, and hepcidin after exercise have also been observed in subjects
in sport training [53,54]. On the other hand, in another study, Santos et al. [55] reported an
increase in Il-6, Il-1ra, Il-8, and Il-10 (but not TNF-α or Il-1β) levels in athletes after they
completed a marathon. In contrast, Wadley et al. [56] also observed exercise-dependent
changes in interleukin concentrations in subjects who were not in training.

Physical activity increases cortisol and epinephrine blood levels, releases IL-6 from
active muscles, and increases Il-10 production [57]. Despite its anti-inflammatory effects,
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cortisol leads to muscle damage, resulting in the appearance of pro-inflammatory cytokines
in the blood [55]. On the other hand, Toft et al. [58] demonstrated an association with an
increase in Il-6 concentration during exercise; however, the increase in muscle damage
markers (creatinine kinase and myoglobin) was disproportionate to the minor increase in
Il-6 concentration. Thus, the increase in Il-6 levels after exercise is probably not solely due
to muscle cell damage [59].

Elevated TNF-α, INF-γ, IL-1β, and IL-2 levels have been observed in patients with
vitamin D deficiency [60]. On the other hand, He et al. [61], demonstrated an association
of decreased production of the cytokines TNF-α, IL-6, INF-γ, Il-2, and Il-10 with high
plasma vitamin D concentrations (values of 1000 and 10 000 pmol/L) in athletes who
practice endurance sports. This study also demonstrated the effect of vitamin D deficiency
on increased circulating INF-γ and Il-10 interleukins. The 2013 study by He et al. [62],
as did our pilot study, involved athletes training in winter (longitude 53◦N). This study
additionally demonstrated an association of a higher incidence of upper respiratory tract
inflammations in athletes with vitamin D deficiency [63]. Vitamin D deficiency and the
associated increase in pro-inflammatory cytokines may decrease overall immunity in
athletes. In our study, we confirmed the significant negative association of serum vitamin
D levels with TNF-α and LYMPH values.

Studies evaluating the correlation between serum vitamin D levels and cytokine levels
are inconclusive.

In a 3-month prospective study, Yusupov et al. [61] evaluated the effect of vitamin
D supplementation on the levels of cytokines (Il-2, 4, 5, 6, 8, 10, and 13) and GM-CSF,
INF-gamma, and TNF-α. They showed no statistically significant changes on cytokine
levels in a healthy adult group [61]. Other researchers, when studying 95 healthy adults in
Japan, found no association of vitamin D levels with IL-6 or interferon-gamma. Instead,
they showed an association with Il-17, regardless of physical activity level. In their group,
as in ours, vitamin D deficiency was observed in more than 50% of the subjects [2]. In view
of these data, it seems reasonable to monitor vitamin D concentrations in physically active
individuals, including competitive athletes.

Peterson et al. [64] measured TNF-α levels in healthy women in relation to serum
vitamin D levels. They showed a correlation between increasing vitamin D levels and de-
creasing TNF-α levels [64], which confirms our results. TNF-α is produced by macrophages,
monocytes, T cells, adipocytes, and fibroblasts. Vitamin D supplementation in patients with
myocardial damage has been shown to significantly reduce levels of this pro-inflammatory cy-
tokine [65]. It seems that the negative effect of exercise on the elevation of pro-inflammatory
cytokines could be minimized by ensuring adequate serum vitamin D concentrations.
However, determining accurate vitamin D levels with such effects in athletes requires
further research.

The analysis of the association between vitamin D levels and morphotic blood ele-
ments showed a significant negative correlation only with the percentage of lymphocytes
and a significant positive correlation with the number and percentage of neutrophils; it
is difficult to say whether such a correlation may indicate a higher risk of infection in
vitamin D deficient subjects. No association of vitamin D with NLR or PLR was shown.
The NLR index in the vitamin D deficiency group was even significantly lower than in the
group with normal supply. The association of those inflammatory indices with vitamin D
deficiency was pointed out by Akbas et al. [66], who reported significantly higher NLR and
PLR indices in a group of 3326 subjects with vitamin D deficiency compared to 794 subjects
with normal supply. The cited authors indicated that PLR index may be an independent
predictor of vitamin D deficiency. In addition, Erkus et al. [22] showed that NLR and MPV
can be markers of inflammation associated with vitamin D deficiency (the authors studied
85 subjects, out of whom 45 presented with vitamin D deficiency). According to that study,
NLR values of >1.69 had 76% sensitivity and 55% specificity for vitamin D deficiency. The
results of our study do not support these findings, probably primarily due to the small
size of the study group. Taking into account the literature data, however, it seems that
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it is worth examining these indices, particularly because the tests are inexpensive and
widely available, and if the results are elevated, they can prompt a doctor, including sports
medicine doctor, to assess vitamin D concentration in such patients.

In the group of football players in our study who had vitamin D concentration
≥20 ng/mL, the number of eosinophil cells was significantly higher than in the group
with vitamin D deficiency. Moreover, we showed a statistically significant correlation
between 25(OH)D levels and the number of eosinophils in peripheral blood. Eosinophils
are considered the peripheral effector of the type 2 T helper cell (Th2) arm of immunity
involved in the allergic response [67]. However, the correlation between serum vitamin D
and eosinophils has not been definitively confirmed. Several studies have shown that lower
levels of vitamin D are associated with increased blood eosinophils [31,32]. However, most
other studies have not shown any statistical significance of such an association [68,69].

At this stage of the study, we are unable to explain the positive correlation of vita-
min D with eosinophil count; this certainly requires further research. In conclusion, our
findings regarding the association of vitamin D deficiency with hemogram changes do not
support the observations of other authors. Nevertheless, we emphasize that our study is a
pilot study.

5. Limitations

Our study undoubtedly had some limitations, primarily due to the small sample size,
but the group was homogeneous with respect to race, age, physical activity level, exercise
load used, body fat, and lifestyle—including diet, sunlight exposure time, and place of
residence (Wrocław, Poland). At the same time, we observed a high proportion of athletes
with vitamin D deficiency, which obliges us to continue similar studies in a group with
optimal vitamin D concentration. In our study, we assessed vitamin D status only during
the winter period; to characterize it better, it will be necessary to check 25(OH)D levels also
during the summer season. In our research, we limited ourselves to measuring only three
cytokines and typical blood count, but it should be emphasized that this was a pilot study.

6. Conclusions

Based on the results of our study, we concluded that football players from Poland
are not protected against vitamin D insufficiency in winter months. Moreover, Vitamin
D deficiency may be associated with an increased pro-inflammatory risk in competitive
athletes, which can play an important role in decreased immunity, increase the risk of
injuries, or contribute to the onset of overtraining syndrome.
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